It has been shown (Linhart and Bilbao, 2000) that an \(m=0 \) instability of a Z-pinch carrying a current of the order of 10 MA, with a rise time inferior to 10 nsec can generate a spark capable of igniting a fusion detonation in the adjacent D-T plasma channel. A possible method for generating such currents, necessary for the implosion of an initial large radius, low temperature Z-pinch, can be a radial implosion of a cylindrical fast liner. The problem has been addressed in a previous publication (Linhart, 1988) without considering the role played by an initially impressed \(m=0 \) perturbation, a mechanism indispensable for the generation of a spark. The liner/Z-pinch dynamics can be solved at several levels of physical model completeness. The first correspond to a zero-dimensional model in which the liner has a given mass per cm length and a zero thickness, the plasma is compressed adiabatically and is isotropic, there are no energy losses and no Joule heating. The second level is one-dimensional. The Z-Pinch plasma is described by the full set of equations, similar to those of (Linhart and Bilbao, 2000). The liner is treated first as thin and incompressible and subsequently it is assumed that it has a finite thickness and is composed of a heavy ion plasma, having an artificial but realistic EOS. Both plasma and liner are considered uniform in the Z-direction and only D-T reactions are considered. We shall show that, given sufficient energy and speed of the liner, the Z-pinch can reach a volume ignition (see also Rahman et al., 1995; Mirza et al., 1999, Galisov et al.,1989). The third level is two-dimensional. Plasma and liner are treated as in the second level but either the Z-pinch or the liner is perturbed by and \(m=0 \) non-uniformity. It will be demonstrated that provided the liner energy is high enough and the initial \(m=0 \) non-uniformity. It will be demonstrated that provided the liner energy is high enough and the initial \(m=0 \) perturbation is correctly chosen, the final neck plasma can act as a spark for D-T ignition. We shall also show that the liner energy required for generating a spark and the subsequent detonation propagation is considerably less than in the case of volume ignition.